
Technical Manual of the Universal Webserver

Organisation: Copyright (C) 2019-2024 Olivier Boudeville

Contact: about (dash) universal-webserver (at) esperide (dot) com

Creation date: Saturday, May 2, 2020

Lastly updated: Sunday, January 14, 2024

Version: 1.1.4

Status: Stable

Dedication: Users and maintainers of the Universal Webserver.

Abstract: The Universal Webserver, part of the Universal Server
umbrella project, provides a multi-domain, multi-virtualhost
webserver integrating various web-related services.
We present here a short overview of these services, to introduce
them to newcomers.
The next level of information is either to browse the US-Web
API documentation or simply to read the corresponding source
files, which are intensely commented and generally straightfor-
ward.

1

http://us-web.esperide.org/
https://github.com/Olivier-Boudeville/Universal-Server
api-doc/index.html
api-doc/index.html
https://github.com/Olivier-Boudeville/us-web
https://github.com/Olivier-Boudeville/us-web

Table of Contents
Overview 5

Easy Testing of US-Web 5

Layer Stack 5

Server Deployment 7
Native Deployment (recommended) . 7

Direct, Ad Hoc Deployment . 7
Deployment for Systemd Integration (recommended) 7
Checking Launch Outcome . 8

Deployment based on rebar3 . 8

Configuring the Universal-Webserver 10
In a Development Setting . 11
In a Production Setting . 11
Configuration Files . 12

US-Web Application Base Directory 14
Separating the US-Web Software from its data 14
Catch-alls, HTTPS, Challenge Types and Wildcard Certificates . 16
Other Configuration Files . 16

Operating System Settings . 16
Regarding authbind . 16

Running the Universal-Webserver 16
Stopping any prior instance first . 17
Launching the US-Web Server . 17

Monitoring the US-Web Server 17
Local Monitoring . 17

Checking EPMD . 18
Overall Local Inquiry . 18
General Logs . 18
Webserver Logs . 19

Remote Monitoring . 19
HTTP Client Check . 19
Trace Listener Check . 20

Remote Action . 21

Nitrogen Support 21
Deployment . 22

Deployment of a Nitrogen-enabled US-Web 22
Deployment of the Nitrogen-based website / application 22

Configuration . 22
Nitrogen-related Information . 22

2

Extra Features 23
Auto-generated Meta Website . 23
Icon (favicon) Management . 24
CSS Management . 24
Error 404 Management . 24
Site Customisation . 24

Usage Recommendations 25

Licence 26

Current Stable Version & Download 26
Using Cutting-Edge Git . 27
OTP Considerations . 28

Troubleshooting 28
Start-up Failure . 28
Certification Generation Issues . 29

Hints 29
Development vs Production Mode . 29
Development Hints . 30

Operating directly from within the rebar build tree 30
Operating from _checkouts build trees 30

Configuration Hints . 30
Batch Mode . 30
Location of Applications . 30
System-related Hints . 31
Web-related hints . 31

Execution Hints . 31
Monitoring Hints . 32

In terms of (UNIX) Processes . 32
Trace Monitoring . 34
Node Test & Connection . 34

Forcing Certificate Renewal Without Restarting the Server 35
Safer US-Web Updates: Testing a New Instance First Out of the Loop 35

Objective . 35
Test Installation . 36
Test Configuration . 36
Firewall Configuration . 37
Test Code Updates . 37
Launching the Test Server . 37
Testing it . 38
Test Teardown . 38

Standard Log Generation & Analysis 38
Web Analytics Software: Choice of Tool 39
Log Format . 39
Awstats Management . 40

Awstats Installation . 40
Awstats Configuration . 40

3

Awstats Troubleshooting . 41
Geolocation with Awstats . 41

Managing Public-Key Certificates 42
X.509 Certificates . 42
Let’s Encrypt . 42
US-Web Mode of Operation . 43

For mono-domain certificates . 43
For wildcard certificates . 43

Settings . 43
HTTPS Troubleshooting . 44

Planned Enhancements 45
Reverse Proxy . 45

Purpose . 45
Challenges . 45
Implementations . 45
US-Web Reverse Proxy . 45

Support 46

Please React! 46

Ending Word 46

4

Overview
We present here a short overview of the services offered by the Universal Web-
server, to introduce them to newcomers.

The goal of US-Web is to provide an integrated, extensible web framework
in order:

• to better operate websites based on virtual hosting, so that a networked
computer can serve as many websites corresponding to as many domains as
wanted; this involves reading and interpreting vhost and other configura-
tion information, handling properly 404 errors, producing access logs that
are adequate for web analytics, rotating all logs, using/generating/renewing
automatically SSL certificates, etc.

• to link to the Universal Server optionally (i.e. if available, knowing both
should be able to run in the absence of the other), in order to offer a web
front-end for it

Beyond this document, the next level of information about US-Web is to read
the corresponding source files, which are intensely commented and generally
straightforward.

The project repository is located here.

Easy Testing of US-Web
Provided that no server already runs at TCP port #8080, just downloading
the get-us-web-from-sources.sh script and running it with no specific parameter
(e.g. sh get-us-web-from-sources.sh, as a normal user) should suffice.

This should result in US-Web being cloned and built, and a test server (if
requested, see the --help script option for usage) should be configured and run.
It should be then available at http://localhost:8080.

Another way of testing, this time from a US-Web Git compiled with its
prerequisites, is simply to execute make debug from its root.

See also the Server Deployment section for, beyond a mere testing of US-
Web, a setting up of it in a production context.

Layer Stack
From the highest level to the lowest, as summarised here, a (free software) stack
involving the Universal Webserver usually comprises:

• the Universal Webserver services themselves (i.e. this US-Web layer)

• Cowboy (for a small, fast and modern web framework)

• [optional] LEEC (for the management of Let’s Encrypt certificates)

• [optional] Awstats (for the analysis of access log files)

• US-Common (for US base facilities)

• Ceylan-Traces (for advanced runtime traces)

5

https://en.wikipedia.org/wiki/Virtual_hosting
https://github.com/Olivier-Boudeville/us-main
https://github.com/Olivier-Boudeville/us-web/src
https://github.com/Olivier-Boudeville/us-web
https://raw.githubusercontent.com/Olivier-Boudeville/us-web/master/priv/bin/get-us-web-from-sources.sh
http://localhost:8080
https://github.com/Olivier-Boudeville/us-web
http://us-web.esperide.org/
https://github.com/ninenines/cowboy
https://github.com/Olivier-Boudeville/Ceylan-LEEC/
http://www.awstats.org/
http://us-common.esperide.org/
http://traces.esperide.org

• Ceylan-WOOPER (for OOP)

• Ceylan-Myriad (as a general-purpose Erlang toolbox)

• Erlang/OTP (for the compiler and runtime)

• GNU/Linux (for a suitable, reliable operating system of course)

The shorthand for the Universal Webserver (a.k.a. US-Web) is uw.

6

http://wooper.esperide.org
http://myriad.esperide.org
http://erlang.org
https://en.wikipedia.org/wiki/Linux

Server Deployment

Note
Please ensure that no prior instance of US-Web is already running, oth-
erwise the new one will not be able to auto-launch, with an error message
like: Protocol ’inet_tcp’: the name us_web@YOUR_SERVER seems
to be in use by another Erlang node. Refer to the Troubleshoot-
ing section for further guidance.

In all cases, if opting for the generation of certificates, in order to avoid
hitting, in case of problem, any rate limit enforced by the ACME servers, we
recommend to perform first a "dry run" by setting in your US-Web configuration
file {certificate_mode, development} so that the staging ACME infrastruc-
ture is targeted first, leading only to temporary certificates.

If the whole deployment procedure went smoothly, then only switch back
to {certificate_mode, production} and restart US-Web, in order to rely on
the actual ACME servers and thus obtain the intended final certificates.

Native Deployment (recommended)
This procedure relies on our native build/run system, which is the only one that
is officially supported in the context of US-Web, and involves only two steps.

First step is to:

• create a /etc/xdg/universal-server directory in which a relevant US
configuration file (us.config) is added, referencing a suitable US-Web
configuration file (e.g. foobar-us-web.config) located in the same di-
rectory; refer to the Configuring the Universal-Webserver section

• transfer to the target server our deploy-us-web-native-build.sh script (in
a US-Web clone, it is located in priv/bin), possibly simply at the root of
one’s normal user

• ensure that no prior webserver is running at the target port(s) (otherwise
specify the --no-launch option below)

After deployment the installation itself will be located by default in the
/opt/universal-server/us_web-native directory.

Step #2 exists in two versions, either based on a direct launching or, prefer-
ably, on one managed by Systemd.

Direct, Ad Hoc Deployment

This second step boils down to executing (as a normal user - the sudo per-
missions will be requested only whenever necessary) our deploy-us-web-native-
build.sh script, with no specific argument.

Deployment for Systemd Integration (recommended)

If relying on systemctl (hence on our us-web-as-native-build.service file),
the following procedure shall be preferred for this second step:

7

https://github.com/Olivier-Boudeville/us-web/blob/master/priv/bin/deploy-us-web-native-build.sh
https://github.com/Olivier-Boudeville/us-web/blob/master/priv/bin/deploy-us-web-native-build.sh
https://github.com/Olivier-Boudeville/us-web/blob/master/priv/bin/deploy-us-web-native-build.sh

Get ready first (as a regular user; sudo permissions to be
requested only whenever necessary):
#
$./deploy-us-web-native-build.sh --no-launch

Useful, as Systemd shall detect the update of the US-Web service file:
$ sudo systemctl daemon-reload

Then stop properly any prior US-Web instance:
$ sudo systemctl stop us-web-as-native-build.service

If EPMD still thinks a previous US-Web instance is running:
(unlikely to be needed, and could impact any other running
Erlang program, so be cautious...)
#
#$ sudo killall epmd

Relaunch US-Web, and initiate the certificate renewal process:
$ sudo systemctl start us-web-as-native-build.service

Then, as a first check of that launch, one may execute:

$ sudo systemctl status us-web-as-native-build.service

See the next section for more in-depth checking and monitoring.

Checking Launch Outcome

If having requested the renewal of SSL certificates (the certificate_support
entry of the US-Web configuration file being set to renew_certificates), in-
coming HTTP requests will be directly served yet will be redirected to HTTPS
ones that will complete successfully only once proper certificates will have been
obtained (hence after a few dozens of seconds after server startup).

These certificates can be checked (e.g. in terms of timestamps) in the
certificates subdirectory of the one designated by the us_web_data_dir en-
try (typically in /opt/universal-server/us_web-data/certificates).

Finally, from a client host, one may also check the availability of the target
webserver(s); refer to the Remote Monitoring section for that.

Deployment based on rebar3

Note
With rebar3 we encountered a lot of difficulties regarding build and
release. So, at least for the moment, we dropped the use of rebar3
and focused instead on our native build/run system, which is perfectly
suitable and fully sufficient. We do not plan to restore the rebar3 build
anymore (contributions are welcome though - but be aware that the
dependency management is bound to be tricky).

8

If wanting nevertheless to rely on rebar3, the prod profile defined in the
context of rebar3 shall be used.

Currently we prefer re-using the (supposedly already installed) local Erlang
environment on the server (to be shared across multiple services), so by default
ERTS is not included in a US-Web release.

Sources are not included either, as we prefer re-rolling a release to editing
and compiling code directly on a server.

To generate from scratch such a (mostly) standalone release, one may use:

$ make release-prod

It should generate a tarball such as us_web-x.y.z.tar.gz
The export-release make target allows in the same movement to lightly

update a pre-existing release and also to transfer it to any target server, desig-
nated by setting the WEB_SRV (make or environment) variable to the FQDN of
this server.

So we recommend running:

$ make export-release
Generating rebar3 us_web.app file
Compiling us_web from XXX/us_web
===> Verifying dependencies...
===> Compiling myriad
Hiding unsupported sources
Populating the include symlinks
[...]

We recommend installing a release in REL_BASE_ROOT=/opt/universal-server:

$ mv /tmp/us_web-x.y.z.tar.gz ${REL_BASE_ROOT}
$ cd ${REL_BASE_ROOT}
$ tar xvf us_web-x.y.z.tar.gz

Then various steps are necessary in order to have a functional release running
satisfactorily.

We automated the full deployment process of US-Web on a server for that:
once the release has been transferred to that server (possibly thanks to the
aforementioned export-release target, possibly to the /tmp directory of that
server), one may rely on our deploy-us-web-release.sh script. One may also just
take inspiration from it in order to devise one’s deployment scheme.

Let’s say from now on that the UNIX name chosen for the US user is
us-user, the one of the US-web user is us-web-user and the US group (con-
taining both users, and possibly only them) is us-group (one should keep in
mind that US-Web is a specialization of the US framework).

Using that script boils down to running, as root:

$ /tmp/deploy-us-web-release.sh
Detected US-Web version: ’x.y.z’.
Trying to stop gracefully any prior release in us_web-x.y.z.
Removing already-existing us_web-x.y.z.
US-Web release ready in ’/opt/universal-server/us_web-x.y.z/bin/us_web’.

9

https://github.com/Olivier-Boudeville/us-web/blob/master/priv/bin/deploy-us-web-release.sh

Changing, from ’/opt/universal-server/us_web-x.y.z’, the owner of release
files to ’us-web-user’ and their group to ’us-group’.
(no auto-launch enabled)

Note that the goal of that deployment phase is to start from a clean state,
and as such it will try to stop any already running US-Web instance (for all
possible versions thereof).

Then US-Web is fully deployed. Once properly configured, it will be able to
be launched for good.

Some related information are specified below.

Configuring the Universal-Webserver
As explained in start-us-web.sh and in class_USWebConfigServer.erl, the US
configuration files will be searched through various locations.

The main, overall US configuration file, us.config, is found based on a series
of directories that are gone through in an orderly manner; the first directory to
host such a file becomes the (single) US configuration directory.

The other US-related configuration files (e.g. any us-web.config) are refer-
enced directly from the main one (us.config), designated there through specific
keys (e.g. us_web_config_filename); they may be either absolutely defined,
or relatively to the aforementioned US configuration directory.

Let’s name US_CFG_ROOT the actual directory in which they all lie; it is typi-
cally either ~/.config/universal-server/ (in development mode), or /etc/xdg/universal-server/
(in production mode).

Note that, as these files might contain sensitive information (e.g. Erlang
cookies), they shall be duly protected. Indeed, in terms of permissions, we
should have 640, supposing that the us.config designates, in its us_web_config_filename
entry, foobar-us-web-for-production.config as the name of the US-Web
configuration file1:

-rw-r----- 1 us-user us-group [...] us.config
-rw-r----- 1 us-web-user us-group [...] foobar-us-web-for-production.config

Finally, if being able to rely on multiple, different US configuration directo-
ries is necessary in order to be able to launch multiple US-Web instances (these
configurations can then register the managers involved - typically the US-Web
Configuration server - under different names), only a single node can be used
per EPMD instance as, by default, such a node is named us_web (two US-Web
instances would then clash at this level).

So, in order to run multiple US-Web instances (e.g. one in production, one
for testing) on a given host, they shall be multiplexed on different EPMD ports
(see the epmd_port key of the US and US-Web configuration files; as a result,
different universal-server configuration directories shall then be defined and
used).

1They shall be in the same US_CFG_ROOT directory (discussed below), and may be symbolic
links.

10

https://github.com/Olivier-Boudeville/us-web/blob/master/priv/bin/start-us-web.sh
https://github.com/Olivier-Boudeville/us-web/blob/master/src/class_USWebConfigServer.erl

In a Development Setting
The US main configuration file, us.config, is in a directory (US_CFG_ROOT) that
is ~/.config/universal-server/ here. This US-level configuration file will
reference (through its us_web_config_filename entry) a US-Web counterpart
configuration file, probably in the same directory.

The US-Web configuration file may define a us_web_app_base_dir entry. If
not, this application directory will then be found thanks to the US_WEB_APP_BASE_DIR
environment variable (if defined, typically through one’s ~/.bashrc); otherwise,
as a last resort, an attempt to guess it will be done.

The US webserver may be then run thanks to make debug, from the rele-
vant us_web directory (typically the root of a Git clone located in the user’s
directory).

In such a development context, in us_web/conf/sys.config, we recommend
to leave the batch mode disabled (just let the default {is_batch,false}), so
that a direct, graphical trace supervision is enabled (provided that a relevant
trace supervisor is available, see Ceylan-Traces for that).

In a Production Setting
The start/stop management scripts will be run initially as root (possibly through
systemd) and must access the us.config file. Then, once run, us_web will
most probably switch to a dedicated user (see the us_web_username entry in
the US-Web configuration file), who will need in turn to be able to read the
us.config file and any related one (e.g. for US-Web, here supposed to be
named foobar-us-web-for-production.config).

As a result, a relevant configuration directory (denoted US_CFG_ROOT in this
document), in that shared setting, is the standard /etc/xdg one, resulting in
the /etc/xdg/universal-server directory to be used.

As mentioned, care must be taken so that root and also the US and US-
Web users can read the content of that directory - at least the US and US-Web
configuration files in it - and that the other users cannot.

For that, a dedicated us-group group can be created, and any web user (e.g.
us-web-user) shall belong to that group. For example:

$ id us-web-user
uid=1002(us-web-user) gid=1002(us-web-user) groups=1002(us-web-user),
1007(us-group)

Then, in /etc/xdg/universal-server, for the US and US-Web configura-
tion files:

$ chown us-user us.config
$ chown us-web-user foobar-us-web-for-production.config

$ us_files="us.config foobar-us-web-for-production.config"
$ chgrp us-group ${us_files}
$ chmod 640 ${us_files}

$ chgrp us-group /etc/xdg/universal-server
$ chmod 700 /etc/xdg/universal-server

11

http://traces.esperide.org/#trace-supervision-browsing

We recommend directly setting the us_web_app_base_dir configuration en-
try to the relevant, absolute path.

Let’s name here US_WEB_REL_ROOT the root of the US-Web release of interest
(e.g. corresponding to ${REL_BASE_ROOT}/us_web-latest/) and US_WEB_APP_ROOT
the root of the corresponding US-Web application (e.g. corresponding to ${US_WEB_REL_ROOT}/lib/us_web-latest/).

A systemd service shall be declared for US-Web, in /etc/systemd/system;
creating there, as root, a symbolic link to ${US_WEB_APP_ROOT}/priv/conf/us-web.service
will suffice.

This service requires start-us-web.sh and stop-us-web.sh. Adding for
user convenience get-us-web-status.sh, they should all be symlinked that
way, still as root:

$ cd /usr/local/bin
$ for f in start-us-web.sh stop-us-web.sh get-us-web-status.sh; \

do ln -s ${US_WEB_APP_ROOT}/priv/bin/$f ; done

The log base directory (see the log_base_directory entry) shall be created
and writable; for example:

$ LOG_DIR=/var/log/universal-server
$ mkdir -p ${LOG_DIR}
$ chown us-user ${LOG_DIR}
$ chgrp us-group ${LOG_DIR}
$ chmod 770 ${LOG_DIR}

In such a production context, in sys.config (typically located in ${US_WEB_REL_ROOT}/releases/latest-release),
we recommend to enable batch mode (just set {is_batch,true}), so that by
default no direct, graphical trace supervision is triggered (a server usually does
not have a X server anyway).

Instead the traces may then be supervised and browsed remotely (at any
time, and any number of times), from a graphical client (provided that a relevant
trace supervisor is available locally, see Ceylan-Traces for that), by running the
monitor-us-web.sh script.

For that the relevant settings (notably which server host shall be targeted,
with what cookie) shall be stored in that client, in a us-monitor.config file
that is typically located in the ~/.config/universal-server directory.

Configuration Files
A us.config file referencing a suitable US-Web configuration file will be needed;
most of the behaviour of the US-Web server is determined by this last configu-
ration file.

As the US-related configuration files are heavily commented, proceeding
based on examples in the simplest approach2.

Refer for that at this (US) us.config example and at this US-Web counterpart
example.

2The second best approach being to have directly a look at the code reading them,
see class_USConfigServer.erl for us.config and class_USWebConfigServer.erl for its US-Web
counterpart.

12

http://traces.esperide.org/#trace-supervision-browsing
https://github.com/Olivier-Boudeville/us-web/blob/master/priv/bin/monitor-us-web.sh
https://github.com/Olivier-Boudeville/us-common/blob/master/priv/for-testing/us.config
https://github.com/Olivier-Boudeville/us-web/blob/master/priv/for-testing/us-web-for-tests.config
https://github.com/Olivier-Boudeville/us-web/blob/master/priv/for-testing/us-web-for-tests.config
https://github.com/Olivier-Boudeville/us-common/blob/master/src/class_USConfigServer.erl
https://github.com/Olivier-Boudeville/us-web/blob/master/src/class_USWebConfigServer.erl

In a nutshell, this US-Web configuration files allows unsurprisingly to specify
all web-related settings, regarding users, directory locations, options such as
ports, log analysis or certificate management and, most importantly, the routes.

Defining routes allows to tell what it the web root directory3 to serve for
each given client-specified URL (in general, only the hostname part is of interest
here), based on pattern-matching.

Such a route definition consists mostly on enumerating each hostname that is
to manage (e.g. "foobar.org" - knowing that the default_domain_catch_all
atom designates all hostnames that could not be matched specifically otherwise)
and enumerating then all the virtual hosts to manage for this domain (e.g. the
"hurricane" host, whose FQDN is thus hurricane.foobar.org - knowing that
the default_vhost_catch_all atom designates all hostnames that could not
be matched specifically otherwise, in the form *.foobar.org, and that the
without_vhost atom designates the hostname itself, i.e. foobar.org).

For example:

{ default_web_root, "/var/web-storage/www" }.

%{ log_analysis, awstats }.

{ certificate_support, use_existing_certificates }.
{ certificate_mode, production }.

% Use ’dns-01’ if wanting wildcard certificates:
{ challenge_type, ’http-01’ }.

% With ’dns-01’, the DNS provider must be specified:
{ dns_provider, ovh }.

{ routes, [

% Note that the first hostname listed will be, regarding
% https (SNI), the main, default one:

{ "foobar.org", [

% So any content requested regarding the www.foobar.org
% FQDN (e.g. http://www.foobar.org/index.html) will be
% looked-up relatively to the
% /var/web-storage/www/Foobar-main directory:
%
{ "www", "Foobar-main" },
{ "club", "Foobar-club" },
{ "archives", "/var/web-storage/Archives-for-Foobar" },

% If just the domain is specified:
{ without_vhost, "Foobar" }

3A web root directory is either specified as an absolute path, otherwise it is relative to a
default_web_root entry to be specified in the US-Web configuration file.

13

% With https, catch-all shall be best avoided:
%{ default_vhost_catch_all, "Foobar" }

] },

{ "foobar.net", [
% (similar rules may be defined)

] }

% Best avoided as well with https:
%{ default_domain_catch_all, [
%
% { default_vhost_catch_all, "Foobar" }
%
%] }

]

}.

US-Web Application Base Directory

This directory allows US-Web to select the various runtime elements it is to use.
This US-Web Application Base Directory may be set in the US-Web

configuration file thanks to its (optional) us_web_app_base_dir entry.
If not set there, US-Web will try to use the US_WEB_APP_BASE_DIR environ-

ment variable instead.
If not usable either, US-Web will try to determine this directory automati-

cally, based on how the server is launched (with our native deployment approach
or as an OTP release).

Of course failing to resolve a proper application base directory will result in
a fatal launch error to be reported at start-up.

Let’s designate this directory from now on with the US_WEB_APP_BASE_DIR
pseudo-variable.

Separating the US-Web Software from its data

It is useful to regularly upgrade the US-Web code while maintaining the data
it uses as it is (not losing it because of a mere software update).

This notably includes the information such as the state of the log analysis
tool (i.e. the synthesis aggregated after having processed a potentially longer
history of access logs when rotating them) or the currently generated certificates
(which are not always easy to renew frequently, if having to respect rate limits)4.

These various states are stored in the US-Web data directory, which can
be set, by decreasing order of priority:

4Access/error logs and the own US-Web traces are not considered belonging to the appli-
cation data; their storage location is discussed in the Webserver Logs section.

14

• in the us_web_data_dir entry of the US-Web configuration file, as an
absolute directory, or as one that is relative to the US-Web applica-
tion base directory (see US-Web Application Base Directory), then as
US_WEB_APP_BASE_DIR/data

• otherwise in the US_WEB_DATA_DIR environment variable

If the default path for this location is us-web-data (relatively to the US-Web
instance base directory, typically deployed in /opt/universal-server/us_web-native),
a recommended practice is nevertheless to set this location explicitly outside of
that instance so that the instance can be upgraded/replaced without any loss
of state.

So the us_web_data_dir entry might be set in the US-Web configuration file
for example to /opt/universal-server/us_web-data. Of course, as always,
proper permissions shall be set in this data tree as well.

Let’s designate this directory from now on with the US_WEB_DATA_DIR pseudo-
variable.

This directory may notably gather following elements:

• the log-analysis-state subdirectory (if log analysis is enabled), con-
taining the working state of the tool for web access analysis, typically
Awstat, thus containing awstats*.baz.foobar.org.txt files for the pre-
processing of its reports

• the certificates subdirectory (if certificate support is enabled), contain-
ing the related keys and certificates for the domains of interest:

– if managing domains D in ["foobar.org", "example.com"], then
D.csr, D.key and D.crt will be stored or produced there (refer to
this section of the documentation of LEEC for further explanations)

– LEEC-related transverse security elements may be found there (if
using it to renew certificates) as well, notably (see this LEEC docu-
mentation section):

∗ us-web-leec-agent-private.key, the RSA private key of the
US-Web LEEC agent so that it can safely authenticate to the
ACME servers it is interacting with and afterwards validate https
handshakes with clients

∗ lets-encrypt-r3-cross-signed.pem, the certificate associated
to the Certificate Authority (Let’s Encrypt here) that is relied
upon

– dh-params.pem, a key generated by LEEC to allow for safer Ephemeral
Diffie-Helman key exchanges

One may create from this certificates subdirectory a GNUmakefile sym-
link pointing to GNUmakefile-for-certificates to easy any checking or backup of
these certificates.

15

https://leec.esperide.org/#getting-information-about-the-generated-certificates
https://leec.esperide.org/#other-files-of-interest
https://leec.esperide.org/#other-files-of-interest
https://github.com/Olivier-Boudeville/us-web/blob/master/conf/GNUmakefile-for-certificates

Catch-alls, HTTPS, Challenge Types and Wildcard Certificates

Having wildcard certificates (which is the default now) - thus relying on the
dns-01 challenge - allows in turn to define catch-alls (host-level and/or domain-
level) routes and wildcard DNS entries (such as * IN CNAME foobar.org.).

Conversely, if setting another challenge type (refer to the challenge_type
configuration entry, typically then set to the http-01 challenge), defining catch-
all routes is not recommended if using https, as these unanticipated hostnames
are by design absent from the corresponding certificates, and thus any user
requesting them (possibly due to a typo) will have their browser report a security
risk (such as SSL_ERROR_BAD_CERT_DOMAIN).

Similarly, wildcard DNS entries should be then avoided (on the other hand,
they allow not to advertise what are the precise virtual hostnames supported;
note though that with https, these virtual hostnames will be visible in the
SANs).

Other Configuration Files

Credentials for One’s DNS Provider If wanting wildcard certificates, the
dns-01 challenge will be used, and this will require credentials to be specified
in order to update DNS entries from one’s DNS provider.

US-Web expect credential files to be available in the base directory where all
US configuration is to be found (typically /etc/xdg/universal-server). Note
that such credentials files (e.g. leec-ovh-credentials-for-foobar.org.txt)
must be well-protected; refer to this LEEC section for more information.

Operating System Settings
Regarding authbind

Many distributions will parameter authbind so that only the TCP port 80 will
be available to "authbound" programs.

If wanting to run an HTTPS server, the TCP port 443 will be most probably
needed and thus must be specifically enabled.

For that, relying on the same user/group conventions as before, one may
enter, as root:

$ cd /etc/authbind/byport
$ cp 80 443
$ chown us-web-user:us-group 443

Otherwise an exception will be raised (about eperm / not owner) when
US-Web will try to create its HTTPS listening socket.

Running the Universal-Webserver
In this section we suppose that a native deployment is being used, with uniform
conventions between the development and server settings; if using a release-
based deployment, note that the Erlang versions used to produce the release
(typically in a development computer) and run it (typically in a production
server) must match (we prefer using exactly the same version).

16

https://leec.esperide.org/#credentials-file

Supposing a vhost to be served by US-Web is baz.foobar.org, to avoid
being confused by your browser, a better way is to test whether a US-Web
instance is already running thanks to wget or links:

$ wget http://baz.foobar.org -O -

This will display the fetched content directly on the console (not creating a
file).

Indeed, when testing a website, fully-fledged browsers such as Firefox may
be quite misleading as they may attempt to hide issues, and tend to cache a lot
of information (not actually reloading the current page), even if the user held
Shift and clicked on "Reload". Do not trust browsers!

One may disable temporarily the cache by opening the developer toolbox
(Ctrl+Shift+I or Cmd+Opt+I on Mac), clicking on the settings button (near
the top right), scrolling down to the Advanced settings (on the bottom right),
checking the option Disable Cache (when toolbox is open) and refreshing
the page. wget may still be a better, simpler, more reliable solution.

Stopping any prior instance first
From now on, we will suppose the current directory is US_WEB_APP_ROOT.

The stop-us-web-native-build.sh script can be used for stopping a US-
Web instance, typically simply as:

$ priv/bin/stop-us-web-native-build.sh

In development mode, still from the root of US-Web, one might use make
stop-brutal to operate regardless of dynamically-changed cookies, while in a
production setting one would go preferably for:

$ systemctl stop us-web-as-native-build.service

Launching the US-Web Server
In development mode, from the root of US-Web, one may use make debug,
while, in production mode, the US-Web server can be launched either with
its dedicated script start-us-web-native-build.sh or, even better, directly
through:

$ systemctl start us-web-as-native-build.service

Monitoring the US-Web Server

Local Monitoring
Here operations will be done directly on the server, and supposing a native
build.

17

Checking EPMD

If using the default US-Web EPMD port, checking whether an instance is run-
ning is as simple as:

$ export ERL_EPMD_PORT=4508; epmd -names
epmd: up and running on port 4508 with data:
name us_web at port 50002

Then executing kill-us-web.sh will kill any live US-Web instance and
unregister it from its EPMD (without killing any EPMD daemon).

Overall Local Inquiry

The get-us-web-native-build-status.sh script (still in priv/bin, as all US-
Web shell scripts) may then be used to investigate any problem in a streamlined,
integrated way.

Alternate (yet often less convenient) solutions are to run systemctl status
us-web-as-native-build.service or, often with better results, journalctl
-xe --unit us-web-as-native-build.service --no-pager to get some in-
sights.

General Logs

A deeper level of detail can be obtained by inspecting the general logs (as
opposed to the webserver ones, discussed in next section), which regroup the
VM-level, technical ones and/or the applicative ones.

VM logs are written in the ${REL_BASE_ROOT}/log directory (e.g. /opt/universal-server/us_web-latest/us_web/log),
which is created when the release is started first. Generally, run_erl.log (if
launched as a daemon) will not help much, whereas the latest Erlang log file
(ls -lrt erlang.log.*) is likely to contain relevant information.

So one may consult them for example with:

$ tail -n 50 -f /opt/universal-server/us_web-latest/us_web/log/erlang.log.1

As for our higher-level, applicative traces, they are stored in the the
us_web.traces file, in the directory defined in the us_web_log_dir entry of
the US-Web configuration file. This last file is specified in turn in the relevant
us.config configuration file (see the us_web_config_filename key for that),
which, in development mode, is itself typically found in ~/.config/universal-server
while, in production mode, is likely located in /etc/xdg/universal-server.

In practice, this trace file is generally found:

• in development mode, if testing, in priv/for-testing/log, relatively to
the base directory specified in us_app_base_dir

• in production mode, generally in /var/log/universal-server of /opt/universal-server

This path is updated at runtime once the US-Web configuration file is read;
so typically it is renamed from /opt/universal-server/us_web-x.y.z/traces_via_otp.traces
to /var/log/universal-server/us-web/us_web.traces. If available, it is
surely the most complete source of information.

18

Webserver Logs

These logs, which are maybe less useful for troubleshooting, designate access
and error logs, per virtual host (e.g. for a virtual host VH, access-for-VH.log
and error-for-VH.log). Their previous versions are archived in timestamped,
compressed files (e.g. error-for-VH.Y-M-D-at-H-M-S.xz).

These files will be written in the directory designated by the us_web_log_dir
entry of the US-Web configuration file. Refer to the previous section to locate
this directory (for example it may be /var/log/universal-server/us-web).

Remote Monitoring
Here the state of a US-Web instance will be inspected remotely, with no need
for a shell connection to its server.

HTTP Client Check

First of all, is this US-Web instance available at all? Check with:

$ wget http://baz.foobar.org -O -

One may define one’s dedicated convenience script for that, like a check-baz-website-availability.sh
script whose content would be:

#!/bin/sh
target_url="http://baz.foobar.org"
echo " Checking whether ’${target_url}’ is available:"
wget ${target_url} -O - | head

More elaborate scripts may be devised, testing various virtual hosts with
various protocols (http/https), looping continously should a failure be detected,
like in:

#!/bin/sh
test_url()
{

target_url="$1"
#echo " Checking whether ’${target_url}’ is available:"
if wget -q "${target_url}" -O - 1>/dev/null; then

echo " (’${target_url}’ is available)"
return 0

else
echo "######### Problem: ’${target_url}’ is NOT available! #########" 1>&2
return 1

fi
}

Testing base domains, some virtual hosts, and HTTP/HTTPS availability as
well:
com_test_url="http://foobar.com"
Testing also a virtual host:
com_vh_test_url="http://hello.foobar.com"

19

As HTTPS:
com_vh_https_url="https://other.foobar.com"
com_urls="${com_test_url} ${com_vh_test_url} ${com_vh_https_url}"
Testing also the other domains:
net_test_url=[...]
all_urls="${com_urls} ${net_urls} ${org_urls} ${info_urls} ${biz_urls} [...]"
all_good=1
while [$all_good -eq 1]; do

all_good=0
for u in ${all_urls}; do

if ! test_url $u; then
all_good=1

fi
done
echo
if [$all_good -eq 1]; then

echo "At least an URL could not be reached, testing again..."
fi
sleep 2

done
echo "Good news, all tested domains are available from this local host!"
echo

Trace Listener Check

As for the applicative traces, they may be monitored remotely as well, thanks
to the monitor-us-web.sh script.

This script operates based on a configuration file, us-web-for-remote-access.config
(typically located in ~/.config/universal-server), that allows to designate
the US-Web instance to access for the client host, and the various settings for
that.

For example:

% This file is used by the US-Web framework.
%
% This is a configuration file to enable the interaction with a remote US-Web
% instance (e.g. a production server to be reached from a client host), typically
% to monitor traces, to trigger the generation of log access reports, etc.

% The hostname where the US-Web instance of interest runs:
{us_web_hostname, "baz.foobar.org"}.

% Its cookie, as set in its configuration file:
{remote_vm_cookie, ’foobar-8800a3f8-7545-4a83-c925-ca115a7b014b’}.

% If specifically overridden for thay server:
{us_web_config_server_registration_name, foobar_prod_us_web_cfg_srv}.

% A range of TCP ports that may be used for out-of-band inter-VM communication
% (not using the Erlang carrier; e.g. for send_file):

20

https://github.com/Olivier-Boudeville/us-web/blob/master/priv/bin/monitor-us-web.sh

%
% (this range must be typically in-line with any one set at the level of
% firewalls)
%
{tcp_port_range, {50000, 55000}}.

Then running the aforementioned monitor-us-web.sh script should launch
a trace browser synchronised to the trace aggregator of the targeted US-Web
instance, displaying all traces (i.e. both all that have been emitted since the
start of that instance and all newer ones, being then displayed in direct).

Here is a user-submitted screenshot (edited for confidentiality) of the LogMX-
based trace browser corresponding to the native US-Web trace interface (refer
to Ceylan-Traces for further details):

Remote Action
It is possible to trigger the generation of web access reports (refer to the Auto-
generated Meta Website section for details) remotely, either for a single virtual
host of a given domain, or for all virtual hosts of all the hosted domains.

For that one should execute the generate-us-web-log-report.sh script, which
relies on the same us-web-for-remote-access.config configuration file al-
ready discussed in the Remote Monitoring section.

Nitrogen Support

A US-Web instance may host one5 Nitrogen-based website.

5Only a single instance of Nitrogen is supported per US-Web instance, as otherwise the
various pages of the Nitrogen websites would clash through the code path (e.g. there would be
multiple index.beam files there; there would also be problems with the relative paths currently
expected by nitro_cache, etc.).

So, if wanting to have multiple Nitrogen websites available from a common domain name,
one shall rely on a reverse proxy. It is hardly a limitation, as web applications are better
managed independently anyway, in order to be able to freely start / stop / update them, to
isolate them with different users, to separate their resource uses, etc.

21

https://traces.esperide.com
https://github.com/Olivier-Boudeville/us-web/blob/master/priv/bin/generate-us-web-log-report.sh
https://en.wikipedia.org/wiki/Reverse_proxy

Deployment
Deployment of a Nitrogen-enabled US-Web

US-Web must be deployed accordingly, typically with the --support-nitrogen
option of the deploy-us-web-native-build.sh script6.

Deployment of the Nitrogen-based website / application

Then of course a Nitrogen-based website must have already been developed, an
example of which being, in US-Main, the us_main_nitrogen_app web applica-
tion.

Such a website is typically obtained by cloning the official Nitrogen reposi-
tory (or possibly our fork thereof) and running:

$ make slim_cowboy PREFIX=$MY_NITROGEN_APP_ROOT PROJECT=my_nitrogen_app

(we prefer relying on a separate system-wide Erlang installation rather than
on an full OTP release)

The root tree of interest then lies in $MY_NITROGEN_APP_ROOT/my_nitrogen_app/site.
The whole of it may be put in VCS, or at the very least its include, src,

static/{css,images}, templates subtrees.

Configuration
Here we must declare to US-Web, through its configuration file (say, my-us-web.config,
as listed under the us_web_config_filename key of one’s us.config file), that,
for a given domain name (say, foo.org), a given virtual host (say, bar, thus des-
ignated as bar.foo.org) is to be served by a Nitrogen instance whose content
root is, relatively to the US-Web default web root, ./my-nitrogen-website.

This is done simply thanks to a user-defined route, like in:

{ routes, [

% These are implicitly static and relative to default_web_root:
{ "foo.org", [{ "project-a", "test-static-website-A" },

{ "project-b", "test-static-website-B" },
{ "project-c", "test-static-website-C" },
{ "bar", "my-nitrogen-website", nitrogen },
{ default_vhost_catch_all, "test-static-website-D" }] },

[...]] }

Nitrogen-related Information
Official Nitrogen sources:

• website

6This script relies on a few forks that we made for better control, namely of nitrogen_core
and simple_bridge (the latter being installed by the former).

22

https://github.com/Olivier-Boudeville/us-main
https://github.com/nitrogen/nitrogen
https://github.com/nitrogen/nitrogen
https://github.com/Olivier-Boudeville/nitrogen
https://howtos.esperide.org/VCS.html
http://nitrogenproject.com/
https://github.com/Olivier-Boudeville/nitrogen_core
https://github.com/Olivier-Boudeville/simple_bridge

• insightful tutorial

• wiki

• Git repository

• the associated Google group

• the Build It With Nitrogen book / ebook

Extra information:

• "It is strongly recommended to catch static files with the static_paths set-
ting. simple_bridge does not serve large static files in an optimal way (it
loads the files into memory completely before sending)"

• Zotonic relied on Nitrogen

• How Nitrogen processes requests

• How to add Nitrogen and Cowboy as dependency libs to your erlang ap-
plication

Extra Features

Auto-generated Meta Website
If requested, at server start-up, a "meta" website - i.e. a website sharing infor-
mation about all other websites being hosted by that server - can be generated
and made available through a dedicated virtual host and web root.

For that, in the US-Web configuration file, among the user-specified routes,
one may add the following element in the list of virtual host entries associated
to a given domain (e.g. foobar.org):

{"mymeta", "My-meta-generated", meta}

This will generate a suitable website in the My-meta-generated subdirectory
of the default web root (as, here, the specified directory is not an absolute one),
and this website will be available as mymeta.foobar.org (of course both mymeta
and My-meta-generated are examples; these names can be freely chosen).

Currently no specific access control to this website is enforced (thus by de-
fault anyone knowing or able to guess its virtual hostname can access it).

Note that apparently, at least under some circumstances, some versions of
Firefox may incorrectly render a Meta web page: despite its HTML source being
correct, for some reason the entry page of websites may correspond to another
virtual host (whereas other browsers display correctly the same Meta page).

23

http://nitrogenproject.com/doc/tutorial.html
https://github.com/nitrogen/nitrogen/wiki
https://github.com/nitrogen/nitrogen
https://groups.google.com/g/nitrogenweb
https://leanpub.com/builditwithnitrogen
http://zotonic.com/features
https://rshestakov.wordpress.com/2013/02/17/how-nitrogen-processes-requests/
https://rshestakov.wordpress.com/2013/03/03/how-to-add-nitrogen-and-cowboy-as-dependecy-libs-to-your-erlang-application/
https://rshestakov.wordpress.com/2013/03/03/how-to-add-nitrogen-and-cowboy-as-dependecy-libs-to-your-erlang-application/

Icon (favicon) Management
This designates the little image that is displayed by browsers on the top of the
tab of the website being visited.

A default icon file can be defined, it is notably used in order to generate
better-looking 404 pages.

To do so, the icon_path key in the US-Web handler state shall be set to the
path of such file (possibly a symbolic link), relatively to the content root of the
corresponding virtual host.

In the context of the (default) US-Web static web handler, if such a common/default-icon.png
exists (e.g. obtained thanks to this kind of generator), it is automatically reg-
istered in icon_path.

CSS Management
A default CSS file can be defined, notably in order to generate better-looking
404 pages.

To do so, the css_path key in the US-Web handler state shall be set to the
path of such file (possibly a symbolic link), relatively to the content root of the
corresponding virtual host.

In the context of the (default) US-Web static web handler, if such a common/default.css
exists, it is automatically registered in css_path.

Error 404 Management
Should some requested web page not be found:

• a suitable 404 page is automatically generated by the US-Web server, and
returned to the caller

• the error is appropriately logged

A 404 image can be optionally displayed instead of the "0" of "404". To
do so, the image_404 key in the US-Web handler state shall be set to the path
of such image (possibly a symbolic link), relatively to the content root of the
corresponding virtual host.

In the context of the (default) US-Web static web handler, if such a images/404.png
file exists, it is automatically registered in image_404.

Site Customisation
As a summary of the sections above, if there is a file (regular or symbolic link),
from the content root of a hosted static website, in:

• common/default.css, then this CSS will be used for all generated pages
for that website (e.g. the one for errors such as 404 ones)

• images/default-icon.png, then this image will be used as an icon (the
small image put on browser tabs next to their labels) for all generated
pages

• images/404.png, then this image will be used for the "0" in the main
"404" label of the page denoting a content not found

24

https://favicon.io/favicon-generator/

Each content root is expected to contain at least a (proper) index.html file
(possibly as a symbolic link).

Usage Recommendations
In terms of security, we would advise:

• to stick to the latest stable version of all software involved (including
US-Web and all its stack including Cowboy and LEEC, Erlang, and the
operating system itself)

• depending on the preferred trade-off between accessibility and security,
to build US-Web either with the us_web_security flag set to strict
(more security; the default) or to relaxed (more compatibility with vari-
ous clients); typically they aim respectively a grade of A and at least B at
the SSL Labs server test; this build flag determines the versions of TLS
supported (e.g. only 1.3 and 1.2; or 1.1 and 1.0 as well), the accepted
list of ciphers (including or not some that are becoming weak), possibly
the RSA key length, Diffie-Hellman parameters, how Forward Secrecy is
managed, etc.; as it is a bit fun, the US-Web server tries (yet with no luck)
to spoof its server signature in the headers, pretending it is an Apache in-
stance; DNS CAA (Certificate Authority Authorization) is not specifically
supported (as LEEC uses throwaway accounts)

• to apply a streamlined, reproducible deployment process, preferably
based on our deploy-us-web-release.sh script

• to rely on dedicated, different, low-privileged users and groups for
US and US-Web, which both rely on authbind; refer to our start-us-web.sh
script for that; see also the us_username key of US-Common’s us.config,
and the us_web_username key of the US-Web configuration file that it
refers to

• still in us.config, to set:

– a strong-enough Erlang cookie: set the vm_cookie key to a well-
chosen value, possibly a random one deriving from an output of
uuidgen

– possibly a limited TCP port range (see the tcp_port_range key)
– the execution context to production (see the execution_context

key)

• to use also the stop-us-web.sh counterpart script, and to have them trig-
gered through systemd; we provide a corresponding us-web.service unit
file for that, typically to be placed in /etc/systemd/system and whose
ExecStart/ExecStop paths shall preferably be symlinks pointing to the
latest deployed US-Web release (e.g. /opt/universal-server/us_web-latest)

• to ensure that a firewall blocks everything from the Internet by default,
including the EPMD port(s) (i.e. both the default Erlang one and any non-
standard one specified through the epmd_port key defined in us.config);
one may get inspiration from our iptables.rules-Gateway.sh script for that

25

https://www.ssllabs.com/ssltest/index.html
https://letsencrypt.org/docs/caa/
https://leec.esperide.org/#caa
https://github.com/Olivier-Boudeville/us-web/blob/master/priv/bin/deploy-us-web-release.sh
https://github.com/Olivier-Boudeville/us-web/blob/master/priv/bin/start-us-web.sh
https://github.com/Olivier-Boudeville/us-common/blob/master/priv/for-testing/us.config
https://github.com/Olivier-Boudeville/us-web/blob/master/priv/bin/stop-us-web.sh
https://github.com/Olivier-Boudeville/us-web/blob/master/conf/us-web.service
https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/iptables.rules-Gateway.sh

• no need to advertise specifically a virtual host in your DNS; for example, so
that a baz.foobar.org is available, only foobar.org has to be declared in
the DNS records (even a *.foobar.org wildcard is not necessary) for the
corresponding website to be available; as a result, unless the full name of
that virtual host is disclosed or a (typically brute-force) guessing succeeds,
that virtual host will remain private by default (useful as a first level of
protection, notably for any meta website)

• to monitor regularly both:

– the US-Web server itself (see our monitor-us-web.sh script for that,
relying on the trace supervisor provided by the Ceylan-Traces layer)

– the remote, browser-based, accesses made to the hosted websites,
typically by enabling the US-Web "meta" feature, generating and
updating automatically a dedicated website displaying in one page
all hosted websites and linking to their web analysis report; refer
to the log_analysis key of the US-Web configuration file (e.g. see
us-web-for-tests.config as an example thereof)

Licence
The Universal Webserver is licensed by its author (Olivier Boudeville) un-
der the GNU Affero General Public License as published by the Free Software
Foundation, either version 3 of this license, or (at your option) any later version.

This allows the use of the Universal Webserver code in a wide a variety of
software projects, while still maintaining copyleft on this code, ensuring im-
provements are shared.

We hope indeed that enhancements will be back-contributed (e.g. thanks to
merge requests), so that everyone will be able to benefit from them.

Current Stable Version & Download
As mentioned, the single, direct prerequisites of the Universal Webserver are:

• Cowboy (version 2.8 or above)

• LEEC as an optional, runtime-only dependency

• Awstats as an optional, runtime-only dependency (version 7.8 or above)

• US-Common

The latter relies on Ceylan-Traces, which implies in turn Ceylan-WOOPER,
then Ceylan-Myriad and Erlang.

We prefer using GNU/Linux, sticking to the latest stable release of Erlang,
and building it from sources, thanks to GNU make. We recommend indeed
obtaining Erlang thanks to a manual installation; refer to the corresponding
Myriad prerequisite section for more precise guidelines.

The build of the US-Web server is driven by rebar3, which can be obtained
by following our guidelines.

26

https://github.com/Olivier-Boudeville/us-web/blob/master/priv/bin/monitor-us-web.sh
http://traces.esperide.org
https://github.com/Olivier-Boudeville/us-web/blob/master/priv/for-testing/us-web-for-tests.config
https://www.gnu.org/licenses/agpl-3.0.en.html
https://github.com/Olivier-Boudeville/UniversalWebserver
https://github.com/ninenines/cowboy
https://github.com/Olivier-Boudeville/Ceylan-LEEC/
http://www.awstats.org/
http://us-common.esperide.org/
https://github.com/Olivier-Boudeville/Ceylan-Traces
https://github.com/Olivier-Boudeville/Ceylan-WOOPER
https://github.com/Olivier-Boudeville/Ceylan-Myriad
http://erlang.org
http://myriad.esperide.org#prerequisites
https://www.rebar3.org/
http://myriad.esperide.org/#getting-rebar3

If a tool for web analysis is needed (typically if enabling a meta website),
this tool must be installed beforehand. Currently US-Web supports Awstats,
which can be obtained thanks to your distribution of choice (ex for Arch Linux:
pacman -S awstats7) .

If wanting to be able to operate on the source code of the Ceylan and/or
US dependencies, you may define appropriate symbolic links in a _checkouts
directory created at the root one’s US-Web clone, these links pointing to relevant
Git repositories (see the create-us-web-checkout make target for that).

Using Cutting-Edge Git
This is the installation method that we use and recommend; the Universal
Webserver master branch is meant to stick to the latest stable version: we
try to ensure that this main line always stays functional (sorry for the pun).
Evolutions are to take place in feature branches and to be merged only when
ready.

Once Erlang (see here), rebar3 (see here) and possibly LEEC (see here) or
Awstats (see here) are available, it should be just a matter of executing our get-
us-web-from-sources.sh script for downloading and building all dependencies at
once, and run a test server (use its --help option for more information).

For example:

$ cd /tmp
$ wget https://raw.githubusercontent.com/Olivier-Boudeville/us-web/master/priv/bin/get-us-web-from-sources.sh
$ sh ./get-us-web-from-sources.sh --checkout
Switching to checkout mode.

Installing US-Web in /tmp...

Cloning into ’us_web’...
[...]
===> Compiling us_web
Starting the us_web release (EPMD port: 4526):
[...]
US-Web launched, please point a browser to http://localhost:8080 to
check test sites.

$ firefox http://localhost:8080 &

One shall then see a text-only page such as:

This is static website D. This is the one you should see if pointing
to the default virtual host corresponding to the local host. This
shows that the US-Web server is up and running.

Understanding the role of the main US configuration file and of the corre-
sponding US-Web configuration file for this test should be fairly straightforward.

Based on that, devising one’s version of them should allow to have one’s
US-Web server running at the cost of very little efforts.

7To avoid a future reading access error, execute after installation: chmod -R +r
/usr/share/webapps/awstats/icon.

27

https://github.com/Olivier-Boudeville/Ceylan
https://github.com/Olivier-Boudeville/Universal-Server
http://myriad.esperide.org/index.html#getting-erlang
http://myriad.esperide.org/index.html#getting-rebar3
https://github.com/Olivier-Boudeville/Ceylan-LEEC#building
https://github.com/Olivier-Boudeville/us-web/tree/master/priv/bin/get-us-web-from-sources.sh
https://github.com/Olivier-Boudeville/us-web/tree/master/priv/bin/get-us-web-from-sources.sh
https://github.com/Olivier-Boudeville/us-common/blob/master/priv/for-testing/us.config
https://github.com/Olivier-Boudeville/us-web/blob/master/priv/for-testing/us-web-for-tests.config

OTP Considerations
The default build system of US-Web is the native Ceylan one (triggered by make
all), yet a rebar3-based one is also available (triggered by make all-rebar3).

In this last context, as discussed in these sections of Myriad, WOOPER,
Traces and US-Common, the Universal Webserver OTP application is generated
out of the build tree, ready to result directly in an (OTP) release. For that we
rely on rebar3, relx and (possibly) hex.

Then we benefit from a standalone, complete Universal Webserver able to
host as many virtual hosts on as many number of domains as needed.

As for Myriad, WOOPER, Traces, LEEC and US-Common, most versions
of the Universal Webserver will be also published as Hex packages.

For more details, one may have a look at rebar.config.template, the general
rebar configuration file used when generating the Universal Webserver OTP
application and release (implying the automatic management of all its depen-
dencies).

Troubleshooting

Start-up Failure
Many operations take place when launching a US-Web instance - especially when
requesting the generation of certificates; so most of the issues are expected to
happen then.

If having deployed a (here, native) release (typically by running deploy-us-
web-native-build.sh) and if systemctl restart us-web-as-native-build.service
failed, start by executing:

$ systemctl status us-web-as-native-build.service

It should return some appropriate information.
Most common sources of failures are:

• there is already a program listening at the target TCP port (typ-
ically port 80) designated for US-Web; one may check for example with
lsof -i:80, otherwise with netstat -ltpn | grep ’:80’; of course use
the same procedures for TCP port 443 if having enabled https on its stan-
dard port

• check that no firewall is in the way (e.g. thanks to iptables -nL | grep
’:80’)

• there may be a prior, lingering US-Web installation that is still run-
ning in the background; one may check for example with ps -edf | grep
us_web; in incrementally brutal ways, one may rely on:

– systemctl stop us-web-as-native-build.service; note that, if
any prior US-Web instance will be shutdown indeed, at least one
some cases EPMD will still believe it is running and will thus block
any next launch; so EPMD should be taken care of as well (at least
by forcibly unregistering a vanished US-Web node), which is done
automatically by the our stop/kill scripts discussed just next

28

http://myriad.esperide.org/myriad.html#otp
http://wooper.esperide.org/index.html#otp
http://traces.esperide.org/index.html#otp
http://us-common.esperide.org/index.html#otp
https://www.rebar3.org/
https://github.com/erlware/relx
https://hex.pm/
https://hex.pm/packages/us_web
https://github.com/Olivier-Boudeville/us-web/blob/master/conf/rebar.config.template
https://github.com/Olivier-Boudeville/us-web/blob/master/priv/bin/deploy-us-web-native-build.sh
https://github.com/Olivier-Boudeville/us-web/blob/master/priv/bin/deploy-us-web-native-build.sh

– or on stop-us-web-native-build.sh

– or even on kill-us-web.sh

• as mentioned above, the EPMD daemon of interest (possibly running
on a non-standard TCP port) may wrongly believe that a prior US-Web
is running, and thus prevent a new one to be launched; a simple solution
could be to run killall epmd, yet unfortunately this solution is abso-
lutely not selective enough: any other running Erlang application could
be impacted as well; so now our EPMD daemons are explicitly launched,
on different ports (default one for US-Web being 4508), with appropriate
settings (-relaxed_command_check) that allow acting on these daemons
independently

• check your authbind local configuration (refer to this section)

If the problem remains, time to perform some investigation, refer to our
Local Monitoring section.

Certification Generation Issues
One may check first that a webserver can indeed be reached for the target
domain or subdomain (e.g. do not forget to define a wildcard CNAME like
*.foobar.org to point on foobar.org, so that virtual hosts can be reached by
the ACME servers).

Beware also not to trigger too many / too frequent certificate requests, as
this could lead to reaching the rate limits implemented by the ACME servers:
then even perfectly legit, correct operations would fail.

Hints
Various keys (e.g. us_app_base_dir) may be defined in the US configura-
tion files (e.g. in a {us_app_base_dir, "/opt/some_dir"} entry), from which
other elements may derive (e.g. paths). To denote the value associated to a
key, we surround in this documentation the key with @ characters (this is just
a reading convention).

For example @us_app_base_dir@/hello.txt would correspond here to /opt/some_dir/hello.txt.

Development vs Production Mode
Should a mismatch be detected between the compile-time execution target and
the runtime, user-configured, execution context, a warning will be issued in the
traces.

When building a fresh release thanks to make release-dev, the correspond-
ing action (rebar3 release) will build that release with the base settings, hence
in development mode (so not "as prod" - i.e. not with the prod profile, hence
not selecting our production execution target).

Note that all dependencies (thus of course including Myriad, WOOPER,
Traces and LEEC) are built by rebar3 with their prod settings. As a result, re-
lying on basic_utils:get_execution_target/0 will only tell us about Myriad

29

https://github.com/Olivier-Boudeville/us-web/blob/master/priv/bin/stop-us-web-native-build.sh
https://github.com/Olivier-Boudeville/us-web/blob/master/priv/bin/kill-us-web.sh

settings (thus always built in production mode), not about any other layer (in-
cluding US-Web). A US-Web trace allows to check all relevant modes, notably
that, in production, the production settings apply indeed.

Development Hints
Operating directly from within the rebar build tree

(not recommended in a development phase)
If having modified and recompiled a Ceylan prerequisite (e.g. WOOPER),

then, before generating the release, run from its root (e.g. us_web/_build/default/lib/wooper):

$ make rebar3-copy-beams REBAR_BUILD_DIR=../../

Or, simply run make rebar3-compile REBAR_BUILD_DIR=../../ (and no
need to run make release afterwards).

Operating from _checkouts build trees

(recommended in a development phase, as a lot more flexible/unified than the
previous method)

Create a us_web/_ckeckouts directory containing symbolic links to reposi-
tories of dependencies (e.g. myriad) that may be updated locally; or, preferably,
execute the create-us-web-checkout make target to automate and streamline
this step.

Configuration Hints
Batch Mode

One can update us_web/conf/sys.config in order to toggle batch mode (e.g.
to enable/disable a graphical trace supervision) after build time.

It deals with the configuration of the Traces application, so it comes very
early at start-up (at application boot, hence before US-Web specific settings can
be read, so this option would be difficult to put in the US configuration files).

Location of Applications

The location of the US-Web application is bound to differ depending on the
context of use (development/production deployments, host-wise, etc.), whereas
it is needed to be known at the very least by its start/stop scripts.

So its path must be specified (most preferably as an absolute directory) in
the US-Web configuration file. However, at least for test configuration files,
relying on an absolute directory would not be satisfactory, as the user may
install the US-Web framework at any place and testing should not require a
manual configuration update.

As a result, should an application location (e.g. US-Web) not be specified
in the configuration, it will be looked-up in the shell environment (using the
US_WEB_APP_BASE_DIR variable) for that and, should this variable not be set,
as a last-resort an attempt to guess that location will be done.

30

System-related Hints

Besides the use of specific, unprivileged user/group thanks to the use of authbind
(set with a minimal depth level), the system resources (notably the maximum
number of file descriptors) are reported (among the traces; search for System
description) at the startup of the US-Web server.

Moreover the launch scripts (namely start-us-web-native-build.sh and
start-us-web-release.sh) raise the limit in terms of maximum number of file
descriptors opened by the US-Web process, so that the connection acceptor does
not have to reduce its accept rate (typically because of rogue bots performing
pseudo-denials of service).

Finally, any webserver shall rely preferably on: - a sufficiently paranoid fire-
wall (see section in Execution Hints) - an uninterruptible power supply (UPS),
protecting the server and the telecom appliances involved

Web-related hints

• most paths (e.g. default_web_root, in the US-Web configuration) can be
defined as relative ones (mostly useful for embedded tests; otherwise ab-
solute paths shall be preferred); in this case they will be relative to the run-
time current directory, typically [...]/us_web/_build/default/rel/us_web/
in development mode

• the default_domain_catch_all atom allows to designate any domain-
level host (e.g. foobar.org) that did not match previous host rules

• in the context of a given host (e.g. foobar.org), the default_vhost_catch_all
atom allows to designate any of its virtual hosts (e.g. bar, to be under-
stood as bar.foobar.org) that did not match previous path rules8

• refer to us_web/priv/for-testing for an example setup and configura-
tion files

• the web roots shall be owned by the user running US-Web (e.g. chown -R
us-web-user:us-group /opt/www)

Execution Hints
• the current working directory of a US-Web instance deployed thanks to
deploy-us-web-release.sh is /opt/universal-server/us_web-x.y.z

• if unable to connect, the firewall (e.g. iptables -L) might be the culprit!
Note that the whole US framework tends to rely on a specific TCP range
(e.g. 50000-55000) for inter-VM communications; for HTTP, TCP port
80 is expected to be opened, and this is TCP port 443 for HTTPS (see
also our iptables.rules-Gateway.sh script)

8When using https, configuring a catch-all might be ill-advised, as whenever an unantic-
ipated virtual host is requested, a certificate warning (e.g. SSL_ERROR_BAD_CERT_DOMAIN) is
triggered - as by design no certificate (direct or through SANs) will exist for this host (a
"connection failed" error is then more desirable).

31

https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/iptables.rules-Gateway.sh

• to debug (once batch mode has been enabled/disabled), one may use the
debug make target, from the tree root

• to test server-side errors, one may create, in a web root, a directory that
cannot be traversed (e.g. chmod 000 my-dir) and direct one’s browser to
a content supposedly located in this directory9; note that, if requesting
instead that faulty directory itself (not an element within), then (whether
or not a trailing / is specified), an error 403 (ERROR 403: Forbidden) is
returned instead (corresponds to the case A in the corresponding sources)

• to test host matching (e.g. for a baz virtual host), including the default
catch-all even on a computer having no specific public DNS entries, one
may simply add in /etc/hosts entries like:

127.0.0.1 foobar-test.net baz.foobar-test.net other.foobar-test.net

• log rotation results in timestamped, compressed files such as access-for-bar.localhost.log.2019-12-31-at-22h-03m-35s.xz;
note that the timestamp corresponds to the moment at which the rotation
took place (hence not the time range of these logs; more an upper bound
thereof)

• to test whether a combination of EPMD port and cookie is legit, one may
use for example:

$ ERL_EPMD_PORT=44000 /usr/local/lib/erlang/erts-x.y/bin/erl_call
-name us_web@baz.foobar.org -R -c ’MyCookie’ -timeout 60
-a ’erlang is_alive’

You then expect true to be returned - not:

erl_call: failed to connect to node us_web@baz.foobar.org

Monitoring Hints
In terms of (UNIX) Processes

A running US-Web server will not be found by looking up beam or beam.smp
through ps; as an OTP release, it relies first on the run_erl launcher, like
shown, based on ps -edf, in:

UID PID PPID C STIME TTY TIME CMD
us-web-user 767067 1 0 Feb15 ? 00:00:00 /usr/local/lib/erlang/erts-x.y/bin/run_erl

-daemon /tmp/erl_pipes/us_web@MY_FQDN/ /opt/universal-server/us_web-US_WEB_VERSION/log
exec "/opt/universal-server/us_web-US_WEB_VERSION/bin/us_web" "console" ’’
--relx-disable-hooks

This can be interpreted as:

9See priv/for-testing/test-static-website-A/to-test-for-errors, which was created
precisely for that. Note that its permissions have been restored to sensible values, as otherwise
that directory was blocking the OTP release generation.

32

• not running as root, but as a dedicated, weakly privileged user

• its parent process (PPID) is the first overall process (as a daemon)

• STIME is the time when the process started

• no associated TTY (runs detached in the background)

This launcher created the main, central, us_web (UNIX) process, parent of
all the VM worker (system) threads.

pstree -u (or ps -e --forest) tells us about the underlying process hier-
archy:

[...]
|-run_erl(us-web-user)---beam.smp---erl_child_setup---inet_gethost---inet_gethost
| |-158*[{beam.smp}]

[...]

The 158 threads must correspond to:

• 128 async ones (-A 128)

• 30 "normal" threads (on a computer having a single CPU with 8 cores
with Hyperthreading, hence 16 logical cores)

Using htop, one can see that the run_erl process spawned a us_web one
(namely /opt/universal-server/us_web-US_WEB_VERSION/bin/us_web) that
is far larger in (VIRT) memory (e.g. 5214MB, instead of 5832KB for the former).

us_web in turn created the numerous threads.
RSS/RSZ (Resident Set Size) is a far better metric than VIRT/VSZ (Virtual

Memory Size); indeed VIRT = RSS + SWP and:

• RSS shows how much memory is allocated to that process and is in RAM;
it does not include memory that is swapped out; it includes memory from
shared libraries (as long as the pages from those libraries are actually in
memory), and all stack and heap memory used

• VIRT includes all memory that the process can access, including memory
that is swapped out, memory that is allocated but not used, and memory
that is from shared libraries

Knowing that, with ps, one may add -L to display thread information and
-f to have full-format listing, a base command to monitor the US-Web processes
is: ps -eww -o rss,pid,args | grep us_web, with:

• -e: select all processes

• -w (once or twice): request wide output

• -o rss,pid,args: display RSS memory used (in kilobytes), PID and full
command line

(apparently there is no direct way of displaying human-readable sizes)
See also our list-processes-by-size.sh script; typical use:

33

https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/list-processes-by-size.sh

$ list-processes-by-size.sh
Listing running processes by decreasing resident size in RAM (total size in KiB):

RSS PID COMMAND
[...]
1204 1695242 /usr/local/lib/erlang/erts-11/bin/run_erl -daemon /tmp/erl_pipes/us_web@somehost.foobar.org/ /opt/universal-server/us_web-x.y.z/log exec "/opt/universal-server/us_web-x.y.z/bin/us_web" "console" ’’ --relx-disable-hooks
67776 1695243 /opt/universal-server/us_web-x.y.z/bin/us_web -A 128 -- -root /opt/universal-server/us_web-x.y.z -progname opt/universal-server/us_web-x.y.z/bin/us_web -- -home /home/us-web-user -epmd_port 4526 -- -boot /opt/universal-server/us_web-x.y.z/releases/x.y.z/start -mode embedded -boot_var ERTS_LIB_DIR /usr/local/lib/erlang/lib -config /opt/universal-server/us_web-x.y.z/releases/x.y.z/sys.config -name us_web -setcookie us_web_initial_cookie -- -- console --relx-disable-hooks --
[...]

This confirms that, even if higher VIRT sizes can be reported (e.g. 5214M,
hence roughly 5GB), the RSS size may be 67776 (KB, hence 66 MB), i.e. very
little, and does not vary much.

Indeed, in terms of RSS use (for a few domains, each with a few low-traffic
websites, if that matters), we found:

• at start-up: only about 67MB

• after 5 days: just 68 MB

• after 24 days: 76 MB

• after 55 days: 80-88 MB

A more recent server instance is using, after more than 70 days, 60 MB of
RSS memory, whereas after 30 days another ones was 108 MB. Anyway quite
low.

Trace Monitoring

Use the us_web/priv/bin/monitor-us-web.sh script in order to monitor the
traces of an already running, possibly remote, US-Web instance.

Note that the monitored US-Web instance will be by default the one specified
in any us-monitor.config file located in the US configuration directory.

One may specify on the command-line another configuration file if needed,
such as us-monitor-for-development.config.

Node Test & Connection

If desperate enough, one may also run, possibly from another host, and based
on the settings to be found in the configuration files:

$ ERL_EPMD_PORT=XXXX erl -name tester -setcookie CCCC -kernel inet_dist_listen_min MIN inet_dist_listen_max MAX

1> net_adm:ping(’us_web@foobar.org’).
pong

Then one may switch to the Job control mode (JCL) by pressing Ctrl-G
then r to start a remote job on the US-Web node.

34

Forcing Certificate Renewal Without Restarting the Server
The renewal of certificates is a rather error-prone operation, as it involves third-
party (ACME) servers, which additionally enforce various rate limits.

Moreover this operation will be triggered automatically a long time10 after
the server has been launched, in the background, so its silent failure shall be
considered (even though the traces should duly keep track of it).

So the goal is to trigger the renewCertificate/1 oneway of the certifi-
cate manager of each website. This can be done simply by triggering the
renewCertificates/1 request of the US-Web configuration server - which hap-
pens to be a registered process.

To determine the name and scope of this server and the various Erlang set-
tings (EPMD port and Erlang cookie) that will be needed in order to connect to
the US node, one may read one’s US configuration, typically in /etc/xdg/universal-server/us.config,
for: vm_cookie, epmd_port and us_web_config_filename, the configuration
file from which us_web_config_server_registration_name can be obtained.

It may be safer to monitor remotely from then on the traces of that server,
using for that the priv/bin/monitor-us-web.sh script.

Then, when logged on the server, or from any client able to connect to it:

We are using short names here:
$ ERL_EPMD_PORT=4506 erl -sname renewer -setcookie ’MY_VM_COOKIE’
(renewer@tempest)1> net_adm:ping(’us_web@hurricane’).
pong
(renewer@tempest)2> CfgSrvPid = global:whereis_name(’my_name_for_the_us_web_config_server’).
<9385.172.0>
(renewer@tempest)3> CfgSrvPid ! {renewCertificates, [], self()}.
{renewCertificates,[],<0.94.0>}
% Expecting certificate_renewals_over:
(renewer@tempest)4> receive {wooper_result,R} -> io:format("Received: ~p~n", [R]) end.

Safer US-Web Updates: Testing a New Instance First Out
of the Loop
Objective

When running a reference server for a set of given domains, one should avoid
stopping US-Web, updating its code and attempting to relaunch it: not only
because this may imply a non-negligible downtime, but also, more importantly,
because, should a failure happen, it would have to be fixed live, in the hurry,
whereas no one can access anymore any of the hosted sites. Not a convenient
situation.

A better, safer (but not simpler) approach is instead to install one’s newer
server instance as a test one on the target host, build it and test it on a tem-
porary setting (on an auxiliary TCP port) and, if and only if the operation
is fully satisfactory, to switch the same setting on the actual port (once the
prior reference instance has been shut down); if on the contrary something goes

10Refer to the dhms_cert_renewal_period_{development,production} defines in
class_USCertificateManager; typically, in production mode, 70 days are to elapse be-
tween two renewals.

35

wrong with the test, it can be safely fixed out of the critical path, not implying
a specific downtime.

Note
Note though that running US-Web on non-standard ports will not per-
mit the http-01 challenges to succeed (as the ACME servers will expect
to find the answers to their challenges by accessing standard ports).

Test Installation

For such a test bed to exist, the usual installation step shall be followed by a
specific, separate configuration step.

Installing is merely a matter of transferring the deploy-us-web-native-build.sh
script to one’s server and to run it (as a normal user), as deploy-us-web-native-build.sh
--no-launch so that it cannot interfere with any reference version running.

A check-foobar-website-availability.sh script may be useful to effi-
ciently check the state of that reference version.

Test Configuration

A first action is to devise a corresponding configuration file and to launch a
corresponding instance on dedicated TCP ports.

It will require a dedicated US-Web configuration file, let’s name it foobar-us-web-for-testing.config.
It will have to be referenced by a corresponding US configuration file (namely
us-config), both of them expected to be in a universal-server directory in a
test-specific root directory, e.g. in TEST_DIR=/opt/universal-server/us_web-data/configuration-for-testing/universal-server
- thus as /opt/universal-server/us_web-data/configuration-for-testing/universal-server/{foobar-us-web-for-testing,us}.config
- rather than in a standard root directory such as /etc/xdg.

The most direct/reliable approach is to copy the reference versions of these
two files and modify them as little as possible.

The test us-config file should specify:

• a cookie of its own (e.g. foobar-testing-be3be613-96d8-4203-a502-73cc42a5e5e2)

• (the EPMD port may be set only in its US-Web counterpart configuration
file)

• possibly different users (preferably not, as wanting to stick as close as
possible to the target settings)

• updated directories (possibly all - like us_log_dir - pointing to TEST_DIR)

• the updated us_web_config_filename, like foobar-us-web-for-testing.config

This foobar-us-web-for-testing.config associated file could then spec-
ify:

• an EPMD port of its own (e.g. 4515); if using our iptables.rules-Gateway.sh
script (refer to this section for more details), one may check in /etc/iptables.settings-Gateway.sh
the us_{low,high}est_epmd_port variables in order to pick an EPMD
port in the LAN-allowed input range, so that hosts from the LAN may
connect to the test US-Web instance on the gateway if needed

36

https://howtos.esperide.org/Networking.html#firewall-management

• us_web_data_dir and us_web_log_dir entries pointing to the aforemen-
tioned TEST_DIR

• updated, non-clashing TCP ports, for example http_tcp_port being 8000
and https_tcp_port being 8443

• for extra caution, certificate_mode may be set to development (rather
than production)

• challenge_type can be set, knowing its default is dns-01

• for routes, for the sake of testing, a single domain may be kept

Finally, if relying on a dns-01 challenge, the credentials for the DNS provider
will have to be available. Creating a symlink in the test-specific root directory to,
say, /etc/xdg/universal-server/leec-ovh-credentials-for-foobar.org.txt
should be sufficient for that.

Firewall Configuration

A second step is, firewall-wise, to enable (temporarily) the access to the test
instance.

The target EPMD port must already fall in a LAN-supported range, yet we
also want to be able to properly test as if we were a random Internet user, thus
connecting from the WAN.

So:

$ iptables -A INPUT -p tcp --dport 8000 -m state --state NEW,ESTABLISHED -j ACCEPT
$ iptables -A INPUT -p tcp --dport 8443 -m state --state NEW,ESTABLISHED -j ACCEPT

Test Code Updates

Tests may show that some modules have to be fixed, and thus that the server
installation has to be updated accordingly (rather than be deployed again from
scratch). The sync-all-to-server make target is useful to synchronise the
code base of a given layer on the server from a development computer; for that
the CEYLAN_SYNC_TARGET_ROOT must be set to the root path on the server; for
example:

$ make sync-all-to-server CEYLAN_SYNC_TARGET_ROOT=/opt/universal-server/us_web-native

Launching the Test Server

For this use, systemctl would not be convenient. A better approach is to
start one’s test server explicitly, based on the configuration files that were just
devised.

First of all, no prior test instance should exist, otherwise they would clash
EPMD-wise. ps -edf|grep -i epmd may help.

Then the target test instance can be launched, as root:

$ cd /opt/universal-server/us_web-latest/us_web/priv/bin
$./start-us-web-native-build.sh /opt/universal-server/us_web-data/configuration-for-testing/universal-server

37

Testing it

Either the launch was reported as succeeded or not.
In the latter case, a launch time-out was reported. The log of the Erlang VM

(typically /opt/universal-server/us_web-native/us_web/log/erlang.log.1)
will probably give relevant information. May a prior test instance is on the way,
clashing in the same EPMD instance, or regarding the target TCP ports?

In the former case, a success is assumed. The best way to confirm this is to
check the overall result by ourself, with wget http://foobar.org:8000 -O -.

Further insight to be obtained based on /opt/universal-server/us_web-data/configuration-for-testing/us_web.traces.

Test Teardown

Finally, now that the test is over, we can close up the mountain with:

The -n option is used to have port numbers rather than aliases:
$ iptables -L --line-numbers -n

$ iptables -D INPUT X

Again, as the previous deletion decremented the number of the last line:
$ iptables -D INPUT X

Standard Log Generation & Analysis
The objective in this section is to have US-Web generate access logs like the
standard webservers do, so that standard tools able to produce log analyses can
be used afterwards. They may generate HTML pages, which can in turn be
appropriately hosted directly by the US-Web framework itself.

US-Web (rather than a crontab) takes control of log writing, for full control
onto the start, stop and rotation behaviours.

For write efficiency, It is done by an (Erlang) process specific to a given
virtual host (see class_USWebLogger), and a task ring is used for synchronicity
and load balancing with regard to log report generation.

For each virtual host (e.g. baz.foobar.org), following log files shall be
generated:

• access-for-baz.foobar.org.log

• error-for-baz.foobar.org.log

They are to be stored by default in the /var/log directory, which can be
overridden in the US-Web configuration file thanks to the us_web_log_dir key.

At the Cowboy level, logging could be done as a middleware, yet we preferred
to perform it directly in the handler (typically the static one, us_web_static),
presumably for a better control.

Once access logs are produced, a specific tool is to generate reports out of
them, as discussed in the next section.

38

https://ninenines.eu/docs/en/cowboy/2.7/guide/middlewares/

Web Analytics Software: Choice of Tool
The desired properties for such a tool are mainly: available as free software,
trustable, standard, actively and well-maintained, running locally (as opposed to
remote services such as Google Analytics), standalone, not resource-demanding,
controllable, generating a local analysis (static) website, based only on basic
webserver logs (not on a dedicated database, not on markers to be added to all
webpages such as 1-pixel images), virtual-host compliant.

Various tools can be considered, including (best spotted candidates, by in-
creasing level of interest):

• The Webalizer: simple reports only, not maintained since 2013?

• OWA: for professional, store-like business

• Matomo: interesting, yet a bit too complete / integrated; requires a ded-
icated database

• GoAccess: a good candidate, almost no dependency, actively maintained,
beautiful reports, supports GeoLite2, but more real-time oriented (more
like a web monitor) and with less in-depth metrics

• AWStats: old yet still maintained, real community-based open-source soft-
ware, very complete, probably the most relevant in the list, whose code is
apparently now maintained here

So we finally retained AWStats.

Log Format
The most suitable log format that we spotted (see [1] and [2] for more informa-
tion) is named "NCSA combined with several virtualhostname sharing same log
file".

Its correct definition is exactly:

LogFormat="%virtualname %host %other %logname %time2 %methodurl %code %bytesd %refererquot %uaquot"

For example:

virtualserver1 62.161.78.73 - - 2020-02-02 01:59:02 "GET /page.html HTTP/1.1" \
200 1234 "http://www.from.com/from.htm" "Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)"

This format is better than the "Apache combined logs" (combined, not com-
mon) log format, as containing the virtual host (important); note that for this
second format, precisely named "Apache or Lotus Notes/Domino native com-
bined log format (NCSA combined/XLF/ELF log format)" would be defined
as:

LogFormat="%host %other %logname %time1 %methodurl %code %bytesd %refererquot %uaquot

For example:

62.161.78.73 - - [dd/mmm/yyyy:hh:mm:ss +0x00] "GET /page.html HTTP/1.1" \
200 1234 "http://www.from.com/from.htm" "Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)"

39

https://en.wikipedia.org/wiki/List_of_web_analytics_software
http://www.webalizer.org/
http://www.openwebanalytics.com/
https://matomo.org/log-analytics/
https://en.wikipedia.org/wiki/Matomo_(software)
https://goaccess.io/GoAccess
https://en.wikipedia.org/wiki/AWStats
https://github.com/eldy/awstats
https://awstats.sourceforge.io/
https://awstats.sourceforge.io/docs/awstats_faq.html#PERSONALIZEDLOG
https://awstats.sourceforge.io/docs/awstats_config.html#LogFormat

Field descriptions for this last format: [1], [2], [3], [4].
See also regarding Awstats log formats: [1], [2], [3].
In all these cases, the log separator is a single space (hence LogSeparator="

").

Awstats Management
Awstats Installation

On Arch Linux, one should follow these guidelines (example for version 7.8):

$ pacman -Sy --needed awstats

Awstats will then be installed in /usr/share, including the /usr/share/webapps/awstats/cgi-bin/awstats.pl
script and the /usr/share/webapps/awstats/icon/ directory.

Some permission fixes (to be done as root) might be needed first:

$ chmod +r /usr/share/webapps/awstats/icon/os/*

Awstats Configuration

Log analysis will be triggered periodically by the US-Web server rather than on-
demand via CGI Perl scripts, and its result, i.e. the web pages generated from
the access logs, will be available in the meta website (e.g. mymeta.foobar.org;
refer to Auto-generated Meta Website for more information).

More precisely, and as already mentioned, in the US-Web log directory (see
us_web_log_dir), dedicated access and error log files will be generated for each
known virtual host. For example the accesses to a baz.foobar.org virtual host
will be written by the US-Web server in a corresponding access-for-baz.foobar.org.log
file.

At server start-up, the US-Web meta module (us_web_meta) will have gener-
ated a suitable Awstats configuration file (namely awstats.baz.foobar.org.conf)
that will trigger the generation of the corresponding static web pages (awstats.baz.foobar.org.*,
notably awstats.baz.foobar.org.html) in the web root of the meta website.

These configuration files are now placed in /usr/local/etc/awstats (they
were previously in the conf subdirectory of the root specified in us_web_app_base_dir).

Indeed, if starting from version 7.8, Awstats allows these configuration files
to be specified as absolute paths, its previous versions:

• either required such configuration files to be in /etc/awstats, /usr/local/etc/awstats,
/etc or in the same directory as the awstats.pl script file

• or, if the configuration files could be specified as absolute paths, the gen-
erated pages would then include some faulty links because of that

US-Web retained the most controllable, less "system" directory, /usr/local/etc/awstats.
All these locations are mostly root-only, whereas the US-Web server is designed
to run as a normal, non-privileged user and is to generate there these Awstats
configuration files.

Such a target directory shall thus be created beforehand, and made writable
by the user specified in us_web_username.

Each virtual host (say: baz.foobar.org) will have its configuration file de-
riving from priv/conf/awstats.template.conf, where the following patterns
will be replaced by relevant ones (through keyword-based replacements):

40

https://en.wikipedia.org/wiki/Common_Log_Format
https://httpd.apache.org/docs/current/logs.html#accesslog
http://fileformats.archiveteam.org/wiki/Combined_Log_Format
https://stackoverflow.com/questions/9234699/understanding-apaches-access-log
https://www.internetofficer.com/awstats/log-format/
https://awstats.sourceforge.io/docs/awstats_faq.html#LOGFORMAT
https://wiki.archlinux.org/index.php/AWStats
https://wiki.archlinux.org/index.php/AWStats

• US_WEB_VHOST_LOG_FILE to become the full path to the corresponding
access log (e.g. access-for-baz.foobar.org.log, in us_web_log_dir)

• US_WEB_VHOST_DOMAIN to become the virtual host domain (e.g. baz.foobar.org)

• US_WEB_LOG_ANALYSIS_DATA_DIR to become the directory in which the
working data (e.g. state files) of the web analyzer (here Awstats) shall be
written

Awstats icons are copied to the icon directory at the root of the meta web-
site.

The Awstats database, typically located in /var/local/us-web/data, will
be updated once an access log file will be rotated; just after, this log file will be
compressed and archived under a relevant filename, such as access-for-baz.foobar.org.log.2020-2-1-at-19h-48m-12s.xz.

Awstats Troubleshooting

Various issues may prevent log reports to be available.
Let’s try with a real US-Web uncompressed log file first (e.g. xz -d access-vhost-catchall.log.test.xz),

supposing that it corresponds to a my-test virtual host).
Then configure Awstats (e.g. through a /usr/local/etc/awstats/awstats.my-test.conf

file) to process that log file; for that, run on that host:

$ perl /usr/share/awstats/tools/awstats_configure.pl

Then, to debug the whole process, use, as root:

$ rm -f /usr/share/webapps/awstats/cgi-bin/awstats*.txt ; echo ;
LANG=C /usr/share/webapps/awstats/cgi-bin/awstats.pl

-config=my-test -showdropped

Most problems should become visible then.
To do the same for a series of web logs in the context of US-Web, one can

have them analysed first thanks to:

$ for f in /usr/local/etc/awstats/awstats-*conf; do echo ;
LANG=C /usr/share/webapps/awstats/cgi-bin/awstats.pl

-config=$f -update ; done

Then all web reports can be generated manually with:

$ for f in /usr/local/etc/awstats/awstats-*conf; do echo ;
LANG=C /usr/share/webapps/awstats/cgi-bin/awstats.pl

-config=$f -output ; done

Geolocation with Awstats
Multiple plugins exist for that.

Apparently, none is able to load the new GeoIP2 format (see also this).
As a consequence: topic dropped for the moment.

41

https://awstats.sourceforge.io/docs/awstats_contrib.html
https://github.com/eldy/awstats/issues/86
https://github.com/eldy/awstats/issues/114

Managing Public-Key Certificates
The goal here is to benefit from suitable certificates, notably (but not only)
for https (typically running on TCP port 443, multiplexed thanks to SNI, i.e.
Server Name Indication11), by automatically (and freely) generating, using and
renewing them appropriately, for each of the virtual hosts managed by the US-
Web server.

X.509 Certificates
The certificates managed here are X.509 TLS certificates, which can be seen as
standard containers of a public key together with an identity and a hierarchical,
potentially trusted Certificate Authority (CA) that signed them12.

Such certificates can be used for any protocol or standard, and many do so -
including of course TLS and, to some extent, SSH. Being necessary to the https
scheme, they are used here.

Let’s Encrypt
US-Web relies on Let’s Encrypt, a non-profit certificate authority from which
one can obtain mono-domain (possibly with SANs - Subject Alternative Names;
and now wildcard domains) X.509 certificates13 for free, valid for 90 days and
that can be renewed as long as needed.

Let’s Encrypt follows the ACME (Automatic Certificate Management Envi-
ronment) protocol. For mono-domain validation, it relies on an http-01 chal-
lenge, with an agent running on the server bound to the domain for which a
certificate is requested.

This agent generates first a RSA key pair in order to interact with the Let’s
Encrypt certificate authority, so that it can prove through received challenge(s)
that it is bound to the claimed domain / virtual host (e.g. baz.foobar.org)
and has the control to the private key corresponding to the public one that it
transmitted to the CA.

Generally this involves for that agent to receive a "random" piece of data
from the CA (the nonce), to sign it with said private key, and to make the
resulting answer to the challenges available (as tokens) through the webserver at
a relevant URL that corresponds to the target virtual host and to a well-known
path (e.g. http://baz.foobar.org/.well-known/acme-challenge/xxx).

Refer to this page for more information; the overall process is explained here
and in this RFC.

As for wildcard certificates, the ACME protocol relies on dns-01 challenges,
which require the certificate requester to prove that it controls the DNS of the
target domain, by updating its zone entries according to information chosen by
the ACME server of the certificate issuer.

11As a consequence, the specific visited virtual hostname (e.g. baz, in baz.foobar.org) is
not encrypted, and thus might be known of an eavesdropper.

12The X.509 standard also includes certificate revocation lists and the algorithm to sign
recursively certificates from a trust anchor.

13Let’s Encrypt provides Domain Validation (DV) certificates, but neither more general
Organization Validation (OV) nor Extended Validation (EV).

42

https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509#Major_protocols_and_standards_using_X.509_certificates
https://letsencrypt.org
https://letsencrypt.org/how-it-works/
https://ietf-wg-acme.github.io/acme/draft-ietf-acme-acme.html#rfc.section.4
https://www.rfc-editor.org/rfc/rfc8555.html

US-Web Mode of Operation
For mono-domain certificates

Rather than using a standalone ACME agent such as the standard one, certbot,
we prefer driving everything from Erlang, for a better control and periodical
renewal (see the scheduler provided by US-Common).

Various libraries exist for that in Erlang, the most popular one being prob-
ably letsencrypt-erlang; we forked it (and named it LEEC, for Let’s Encrypt
Erlang with Ceylan, to tell them apart), in order notably to support newer Er-
lang versions and to allow for concurrent certificate renewals (knowing that one
certificate per virtual host will be needed).

Three action modes can be considered to interact with the Let’s Encrypt
infrastructure and to solve its challenges. As the US-Web server is itself a
webserver, the slave mode is the most relevant here.

For that, the us_web_letsencrypt_handler has been introduced by US-Web.
By default, thanks to the US-Web scheduler, certificates (which last for up

to 90 days and cannot be renewed before 60 days are elapsed) will be renewed
every 75 days, with some random jitter added to avoid synchronising too many
certificate requests when having multiple virtual hosts - as they are done con-
currently, if not SANs are used.

For wildcard certificates

US-Web relies here also as much as possible on LEEC (see this section), even
if, at least currently, the standard certbot is used internally; here US-Web,
thanks to its US-Common Scheduler, acts mostly like an integrated crontab on
steroids.

Settings
Various types of files are involved in the process:

• a .key file contains any type of key, here this is a RSA private key; typ-
ically letsencrypt-agent.key-I, where I is an increasing integer, will
contain the PEM RSA private key generated by the certificate agent I on
behalf of the US-Webserver (so that it can sign the nonces provided by
Let’s Encrypt, and thus prove that it controls the corresponding key pair);
for a baz.foobar.org virtual host, the baz.foobar.org.key file will be
generated and used (another PEM RSA private key)

• a .pem (Privacy-enhanced Electronic Mail) file just designates a Base64-
encoded content with header and footer lines; here it stores an ASN.1
(precisely a Base64-encoded DER) certificate

• .csr corresponds to a PKCS#10 Certificate Signing Request ; it contains
information (encoded as PEM or DER) such as the public key and common
name required by a Certificate Authority to create and sign a certificate
for the requester (e.g. baz.foobar.org.csr will be a PEM certificate
request)

43

https://github.com/Olivier-Boudeville/us-common/blob/master/src/class_USScheduler.erl
https://github.com/gbour/letsencrypt-erlang
https://github.com/Olivier-Boudeville/letsencrypt-erlang
https://github.com/Olivier-Boudeville/letsencrypt-erlang#action-modes
https://github.com/Olivier-Boudeville/us-web/blob/master/src/us_web_letsencrypt_handler.erl
https://leec.esperide.org/#wildcard-domain-certificates-with-the-dns-01-challenge
https://crypto.stackexchange.com/questions/43697/what-is-the-difference-between-pem-csr-key-and-crt-and-other-such-file-ext

• .crt is the actual certificate (encoded as PEM or DER as well), usually
a X509v3 one (e.g. baz.foobar.org.crt); it contains the public key
and also much more information (most importantly the signature by the
Certificate Authority over the data and public key, of course)

We must determine:

• the size of the RSA key of the agent; the higher the better, hence: 4096

• where the certificate-related files will be stored: in the certificates
subdirectory of the US-Web data directory, i.e. the one designated by the
us_web_data_dir key in US-Web’s configuration file (hence it is generally
the /var/local/us-web/us-web-data or /opt/universal-server/us_web-x.y.z/us-web-data
directory)

The precise support for X.509 certificates (use, and possibly generation and
renewal) is determined by the certificate_support key of the US-Web con-
figuration file:

• if not specified, or set to no_certificates, then no certificate will be
used, and thus no https support will be available

• if set to use_existing_certificates, then relevant certificates are sup-
posed to pre-exist, and will be used as are (with no automatic renewal
thereof done by US-Web)

• if set to renew_certificates, then relevant certificates will be generated
at start-up (none re-used), used since then, and will be automatically
renewed whenever appropriate

Another setting applies, determined this time by the certificate_mode key,
whose associated value (which matters iff certificate_support has been set
to renew_certificates) is either development or production (the default).
In the former case, the staging ACME parameters will apply (implying relaxed
limits, yet resulting in the obtained certificates to be issued by a fake, test CA),
whereas the latter case will imply the use of the production ones.

When a proper certificate is available and enabled, the US webserver pro-
motes automatically any HTTP request into a HTTPS one, see the us_web_port_forwarder
module for that (based on relevant routing rules).

Standard, basic firewall settings are sufficient to enable interactions of US-
Web (through LEEC) with Let’s Encrypt, as it is the US-Web agent that ini-
tiates the TCP connection to Let’s Encrypt, which is to check the challenge(s)
through regular http accesses done to the webserver expected to be available at
the domain of interest.

The US-Web server must be able to write in the web content tree, precisely
to write files in the well-known/acme-challenge/ subdirectory of the web root.

HTTPS Troubleshooting
If trying to connect with the https scheme whereas it has not been enabled,
wget https://baz.foobar.org/ -O - is to report Connection refused.

44

https://letsencrypt.org/docs/staging-environment/
https://letsencrypt.org/docs/rate-limits/
https://github.com/Olivier-Boudeville/us-web/blob/master/src/us_web_port_forwarder.erl

Planned Enhancements

Reverse Proxy
Purpose

The goal of a reverse proxy is to have a (proxy) server seamlessly (read: without
doing a HTTP forward - thus with unchanged URLs from the point of view of
the client) redirect incoming traffic to other "proxied" webservers (possibly other
US-Web instances) running on other hosts and/or ports.

A typical use case here14 is having an US-Web instance serve a domain
name of interest (e.g. foo.org) whereas more than one of its virtual hosts are
Nitrogen-based, knowing that no two of such virtual hosts shall be executed by
the same (Erlang) VM (as notably their Nitrogen page modules would clash).

For example a reverse proxy could ensure that connecting to the https://my-server.foo.org
(virtual) host is transparently forwarded to http://foo.org:8150 (a port which
could be filtered by the local firewall - thus with no possible direct access from
the outside network).

So this latter, autonomous webserver my-server instance would run thanks
to its own VM on TCP port 8150, yet would only by reachable by connecting to
the former, centralising webserver, which would act as a reverse proxy. As many
other virtual hosts as wanted could be declared (e.g. as https://my-other-server.foo.org)
to the reverse proxy, each pointing then to its own actual webserver instance
(e.g. http://foo.org:8151).

Challenges

The HTTP/HTTPS routing shall be fully transparent, notably not breaking
any connectivity (e.g. regarding Comet, AJAX, Websockets) and complying
with the proper use of the underlying protocols (e.g. so that browsers do not
interpret a proxying as the spoofing of SSL certificates).

Implementations

There are many solutions in order to obtain a reverse proxy; it may be done:

• directly at the firewall level, typically by configuring iptables accordingly

• thanks to nginx, as a NGINX Reverse Proxy (probably the most popular
option)

• at the Erlang-level: see for example cowboy_revproxy, Surrogate or yaws_revproxy

US-Web Reverse Proxy

For better control US-Web will implement its own reverse proxy.
For that it will automatically modify header fields (e.g. Host, Connection,

X-Real-IP; the source IP could also by set) in the proxied requests.

14The main other uses cases happen when wanting to:

• run a webserver on a non-privileged port

• balance the load between multiple actual servers

45

https://en.wikipedia.org/wiki/Reverse_proxy
https://www.jenkins.io/doc/book/system-administration/reverse-proxy-configuration-with-jenkins/reverse-proxy-configuration-iptables/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://github.com/benoitc/cowboy_revproxy
https://github.com/skruger/Surrogate
https://github.com/erlyaws/yaws/blob/master/src/yaws_revproxy.erl

The responses from proxied servers could be buffered until they are fully
received - to better manage slower clients - yet, as here the proxied servers may
offer rather interactive uses, buffering may not be desirable.

Support
Bugs, questions, remarks, patches, requests for enhancements, etc. are to be
reported to the project interface (typically issues) or directly at the email address
mentioned at the beginning of this document.

Please React!
If you have information more detailed or more recent than those presented in
this document, if you noticed errors, neglects or points insufficiently discussed,
drop us a line! (for that, follow the Support guidelines).

Ending Word
Have fun with the Universal Webserver!

46

https://github.com/Olivier-Boudeville/us-web
https://github.com/Olivier-Boudeville/us-web/issues

	Table of Contents
	Overview
	Easy Testing of US-Web
	Layer Stack
	Server Deployment
	Native Deployment (recommended)
	Direct, Ad Hoc Deployment
	Deployment for Systemd Integration (recommended)
	Checking Launch Outcome

	Deployment based on rebar3

	Configuring the Universal-Webserver
	In a Development Setting
	In a Production Setting
	Configuration Files
	US-Web Application Base Directory
	Separating the US-Web Software from its data
	Catch-alls, HTTPS, Challenge Types and Wildcard Certificates
	Other Configuration Files

	Operating System Settings
	Regarding authbind

	Running the Universal-Webserver
	Stopping any prior instance first
	Launching the US-Web Server

	Monitoring the US-Web Server
	Local Monitoring
	Checking EPMD
	Overall Local Inquiry
	General Logs
	Webserver Logs

	Remote Monitoring
	HTTP Client Check
	Trace Listener Check

	Remote Action

	Nitrogen Support
	Deployment
	Deployment of a Nitrogen-enabled US-Web
	Deployment of the Nitrogen-based website / application

	Configuration
	Nitrogen-related Information

	Extra Features
	Auto-generated Meta Website
	Icon (favicon) Management
	CSS Management
	Error 404 Management
	Site Customisation

	Usage Recommendations
	Licence
	Current Stable Version & Download
	Using Cutting-Edge Git
	OTP Considerations

	Troubleshooting
	Start-up Failure
	Certification Generation Issues

	Hints
	Development vs Production Mode
	Development Hints
	Operating directly from within the rebar build tree
	Operating from _checkouts build trees

	Configuration Hints
	Batch Mode
	Location of Applications
	System-related Hints
	Web-related hints

	Execution Hints
	Monitoring Hints
	In terms of (UNIX) Processes
	Trace Monitoring
	Node Test & Connection

	Forcing Certificate Renewal Without Restarting the Server
	Safer US-Web Updates: Testing a New Instance First Out of the Loop
	Objective
	Test Installation
	Test Configuration
	Firewall Configuration
	Test Code Updates
	Launching the Test Server
	Testing it
	Test Teardown

	Standard Log Generation & Analysis
	Web Analytics Software: Choice of Tool
	Log Format
	Awstats Management
	Awstats Installation
	Awstats Configuration
	Awstats Troubleshooting

	Geolocation with Awstats

	Managing Public-Key Certificates
	X.509 Certificates
	Let's Encrypt
	US-Web Mode of Operation
	For mono-domain certificates
	For wildcard certificates

	Settings
	HTTPS Troubleshooting

	Planned Enhancements
	Reverse Proxy
	Purpose
	Challenges
	Implementations
	US-Web Reverse Proxy

	Support
	Please React!
	Ending Word

